Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions.
نویسندگان
چکیده
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) silences neuronal genes in neural stem cells (NSCs) and nonneuronal cells through its role as a dynamic modular platform for recruitment of transcriptional and epigenetic regulatory cofactors to RE1-containing promoters. In embryonic stem cells, the REST regulatory network is highly integrated with the transcriptional circuitry governing self-renewal and pluripotency, although its exact functional role is unclear. The C-terminal cofactor for REST, CoREST, also acts as a modular scaffold, but its cell type-specific roles have not been elucidated. We used chromatin immunoprecipitation-on-chip to examine CoREST and REST binding sites in NSCs and their proximate progenitor species. In NSCs, we identified a larger number of CoREST (1,820) compared with REST (322) target genes. The majority of these CoREST targets do not contain known RE1 motifs. Notably, these CoREST target genes do play important roles in pluripotency networks, in modulating NSC identity and fate decisions and in epigenetic processes previously associated with both REST and CoREST. Moreover, we found that NSC-mediated developmental transitions were associated primarily with liberation of CoREST from promoters with transcriptional repression favored in less lineage-restricted radial glia and transcriptional activation favored in more lineage-restricted neuronal-oligodendrocyte precursors. Clonal NSC REST and CoREST gene manipulation paradigms further revealed that CoREST has largely independent and previously uncharacterized roles in promoting NSC multilineage potential and modulating early neural fate decisions.
منابع مشابه
REST and CoREST Modulate Neuronal Subtype Specification, Maturation and Maintenance
BACKGROUND The repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master regulator of neuronal gene expression. REST functions as a modular scaffold for dynamic recruitment of epigenetic regulatory factors including its primary cofactor, the corepressor for element-1-silencing transcription factor (CoREST), to genomic loci that contain the rep...
متن کاملRepressor element 1 silencing transcription factor (REST) controls radial migration and temporal neuronal specification during neocortical development.
Neurogenesis requires mechanisms that coordinate early cell-fate decisions, migration, and terminal differentiation. Here, we show that the transcriptional repressor, repressor element 1 silencing transcription factor (REST), regulates radial migration and the timing of neural progenitor differentiation during neocortical development, and that the regulation is contingent upon differential REST...
متن کاملNontelomeric TRF2-REST Interaction Modulates Neuronal Gene Silencing and Fate of Tumor and Stem Cells
Removal of TRF2, a telomere shelterin protein, recapitulates key aspects of telomere attrition including the DNA-damage response and cell-cycle arrest [1]. Distinct from the response of proliferating cells to loss of TRF2 [2, 3], in rodent noncycling cells, TRF2 inhibition promotes differentiation and growth [4, 5]. However, the mechanism that couples telomere gene-silencing features [6-8] to d...
متن کاملNon-Coding RNAs in Neural Networks, REST-Assured
In the nervous system, several key steps in cellular complexity and development are regulated by non-coding RNAs (ncRNAs) and the repressor element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF). REST recruits gene regulatory complexes to regulatory sequences, among them the repressor element-1/neuron-restrictive silencer element, and mediates developmental sta...
متن کاملProfiling of REST-Dependent microRNAs Reveals Dynamic Modes of Expression
Multipotent neural stem cells (NSCs) possess the ability to self-renew and differentiate into both neurons and glia. However, the detailed mechanisms underlying NSC fate decisions are not well understood. Recent work suggests that the interaction between cell type specific transcription factors and microRNAs (miRNAs) is important as resident neural stem/progenitor cells give rise to functionall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 38 شماره
صفحات -
تاریخ انتشار 2010